YR6 Knowledge Organiser - Geometry

Key Concepts

- Recognise, describe and build simple 3D shapes, including making nets
- Compare and classify geometric shapes based on their properties and sizes
- Find unknown angles in any triangles, quadrilaterals and regular polygons
- Recognise angles where they meet at a point, are on a straight line, or are vertically opposite and find missing angles

Key Vocabulary

- 2D / 3D shapes
- nets
- acute / right / obtuse / reflex angle
- vertically opposite angle
- protractor
- compass
- triangle
- quadrilateral
- polygon

3D Shapes

We can apply our knowledge of 3D shapes to recognise and describe their properties, including with everyday objects.

BAKED

BEANS
"The cereal box is a cuboid as it has 6 rectangular faces, 12 edges and 8 vertices. The tin of beans is a cylinder as it has 2 flat faces and 1 curved surface."

Making Nets

Nets are 2D figures that can be folded to make 3D shapes.

There can be several possible nets for one 3D shape. For example, all of the nets below could be folded to make a cube.

Comparing and Classifying Shapes

We can compare and classify geometric shapes based on their properties, such as:

- regular / irregular
- number of parallel or perpendicular sides
- \quad size of angles

Find Unknown Angles in Triangles
The interior angles of a triangle total 180°. We can use this fact to calculate missing angles.

[^0]
YR6 Knowledge Organiser - Geometry

We use hatch marks to show equal side lengths. Recognising the equal lengths helps us to identify the equal angles in isosceles triangles.

$$
\begin{gathered}
a=63^{\circ} \\
b=180^{\circ}-\left(63^{\circ}+63^{\circ}\right)=54^{\circ}
\end{gathered}
$$

Find Unknown Angles in Quadrilaterals
The interior angles of a triangle total 360°. We can use this fact to calculate missing angles

$$
\begin{gathered}
a=360^{\circ}-\left(108^{\circ}+84^{\circ}\right. \\
\left.+74^{\circ}\right)=94^{\circ}
\end{gathered}
$$

As with triangles, we can use our knowledge of the properties of shapes, such as parallel lines, to identify the equal angles in quadrilaterals.

$$
\begin{gathered}
b=72^{\circ} \\
360^{\circ}-\left(72^{\circ}+72^{\circ}\right)=216^{\circ} \\
a=c=216^{\circ} \div 2=108^{\circ}
\end{gathered}
$$

Find Interior Angles in Regular Polygons We can use our knowledge of the interior angles
in a triangle to calculate the sum of the interior angles of a regular polygon.
We can partition shapes into triangles from a single vertex, then multiply the number of triangles by 180° to find the sum of their interior angles.

$180^{\circ} \times 3=540^{\circ}$
The interior angles of a pentagon total 540°

$$
180^{\circ} \times 4=720^{\circ}
$$

The interior angles of a hexagon total 720°.

"The number of triangles increases by 1 for each extra side. This means a heptagon can be split into 5 triangles. The sum of its interior angles is $180^{\circ} \times 5=$ 900°

Angles on a Straight Line

Angles on a straight line have a sum of 180°.
© Deepening Understanding LTD 2022

The missing angle $=180^{\circ}-124^{\circ}=56^{\circ}$

Angles around a Point
Angles around a point have a sum of 360°

$$
\text { The missing angle }=360^{\circ}-\left(113^{\circ}+49^{\circ}\right)=198^{\circ}
$$

Vertically Opposite Angles

Angles on straight lines must have a sum of 180° and opposite angles are equal on two straight

$a=81^{\circ}$

$$
\begin{gathered}
b=180^{\circ}-81^{\circ}=99^{\circ} \\
c=99^{\circ}
\end{gathered}
$$

lines that cross.

[^0]: D. © Deepening Understanding LTD 2022

