# YR5 Knowledge Organiser - Geometry

#### **Key Concepts**

- Identify, 3D shapes, including cubes and other cuboids, from 2D representations
- Know angles are measured in degrees; estimate and compare acute, obtuse and reflex angles
- Draw given angles, and measure them in degrees (°)
- Identify:
  - angles at a point and one whole turn (total 360°)
  - angles at a point on a straight line and a turn (total 180°)
  - other multiples of 90°
- Use the properties of squares and rectangles to deduce related facts and find missing lengths and angles
- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles

### **Key Vocabulary**

- 2D / 3D / regular / irregular
- acute / obtuse / reflex angles
- degrees
- protractor
- inside /outside scales

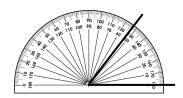


Angles have different names depending on their size (measured in degrees).

| Type of Angle | Size of Angle     |
|---------------|-------------------|
| acute         | < 90°             |
| right         | 90°               |
| obtuse        | > 90° but < 180°  |
| reflex        | > 180° but < 360° |

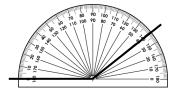
We can also describe angles as fractions of a turn.

90° is a quarter turn, 180° is a half turn, 270° is a three-quarter turn and 360° is a full turn.


We can use our knowledge of the types of angles to estimate the size of angles.



This angle is a reflex angle and looks a bit bigger than a half turn therefore a good estimate for its size is 190°.


We can measure the size of angles accurately using a protractor. Protractors have 2 scales - an inside scale and an outside scale.

We use the inside scale when the angle opens to the right of the protractor.



This acute angle is 53°.

We use the outside scale when the angle opens to the left of the protractor.



This obtuse angle is 141°.

Now, we can compare the measurements.

53°

<

141°

#### **Drawing Accurately**

We can use our knowledge of measuring angles with protractors to draw angles ourselves.

One of the 'arms' of the angle must line up with 0°. The point where the lines meet should line up with the mid point of the protractor too.

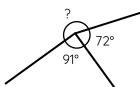
We can also draw lines accurately to the nearest mm using a ruler. We can combine both skills to create more specific drawings. E.g.

Draw an obtuse angle that measures 127° with the arms of the angle 3cm and 6mm long."



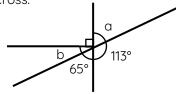
# YR5 Knowledge Organiser - Geometry

### **Angles on a Straight Line**


Angles on a straight line have a sum of 180°. We can use this knowledge to help us calculate missing angles.



 $180^{\circ}$  -  $151^{\circ}$  =  $29^{\circ}$  so the missing angle is  $29^{\circ}$ .


# **Angles around a Point**

Angles around a point have a sum of 360°. We can use this knowledge to help us calculate missing angles.



 $360^{\circ} - 91^{\circ} - 72^{\circ} = 197^{\circ}$  so the missing angle is 197°.

Angles on straight lines must have a sum of 180° and opposite angles are equal on two straight lines that cross.



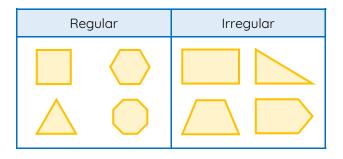
| a = 180° - 1   | 13° = 67°   |
|----------------|-------------|
| b = 180° - 90° | - 65° = 25° |

# **Lengths and Angles in Shapes**

We can use our knowledge of the properties of squares and rectangles to work out missing lengths or angles in shapes.

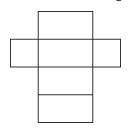
| 7cm |       |       |
|-----|-------|-------|
|     |       |       |
|     |       |       |
|     |       |       |
|     | Δlfie | Anita |

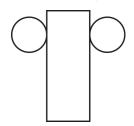



"The rectangle must be 7cm wide and 14cm tall because it is the same width as the square but double its length."

"The missing angle is made up of 3 right angles. 90 + 90 + 45 = 225"




# Regular and Irregular Polygons


A shape is regular if its sides and angles are all equal. We can use this knowledge to decide whether shapes are regular or irregular.



# **3D Shapes**

We can identify 3D shapes from 2D shapes using our understanding of the properties of 3D shapes.





"Net 1 will make a cuboid because its faces are made up of 4 rectangles and 2 squares."





"Net 2 will make a cylinder because it is made up of 1 rectangle which will create a curved surface and 2 circles which will create the flat faces."